Findent: design

Willem Vermin*

Jan 08, 2025

Abstract

Findent is a computer program to indent Fortran sources. Findent can also be
used to convert from fixed format to free format and vice versa. The program
findent became more complex than originally foreseen, that is why | wrote
this document covering the inner workings of findent.

Contents

1 Findent: Design objectives
1.1 Reliability
1.2 Usability

Building findent
21 Endusers
2.2 Program development and maintenance

Usage

3.1 Flags to influence the working of findent
3.2 Generating documentation
3.3 Miscellaneous other functions

Detailed overview of the internals of findent
4.1 Starting the machinery
4.2 The main driver: fortran.run()o L
4.3 Collecting a full Fortran statement
4.4 Preprocessing the full Fortran statement
4.4.1 Parsing the preprocessed full statement
45 Keeping track of indents
4.6 Handling cpp and coco preprocessor statements
47 Relabellingo
4.8 Generate miscellaneous text files

Self replication

Copyright

*Email: contact@ratrabbit.nl. Website: https://ratrabbit.nl.

oW N

IS I N

- ==
(=] OO oo ~N~Nooor o

[ary
[y

mailto:contact@ratrabbit.nl
https://ratrabbit.nl

1 Findent: Design objectives

1.1

Reliability

Assuming that findent will be used in serious projects, involving large Fortran pro-
grams, the code of findent should be as reliable as possible, therefore it is kept as
simple as possible:

1.2

Findent handles only two files: standard input and standard output. The input
contains the Fortran program to be handled, the output contains the modified
program.

The programming language is C4++-, a well maintained and documented lan-
guage.

No multithreading is used.

Parsing the input is done with the aid of bison and flex: well known and
maintained tools.

Findent mostly works on a line-by-line basis. (Exceptions: labelled DO-loops
require a simple administration, and relabelling needs the complete source of
a program unit.)

Findent uses no configuration files: it is steered by command-line parameters
and an environment variable containing command-line parameters.

A comprehensive test-suite is part of the distribution.

Usability

Findent is easy to use, yet offers the possibility to tweak the indentation to the
user's taste:

All options have reasonable defaults, for example, usage can be as simple as:
findent < program.f90 > newprogram.f90

Furthermore, the findent distribution comes with a wrapper script wfindent

that can be used like (to indent all .f90 files):

wfindent *.£f90

Normally, findent detects if the input in fixed or free form.

e All types of indentation (DO, SUBROUTINE, ...) can be specified on the com-

mand line, for example to use 5 spaces after DO:

findent --indent-do=5 <program.f90 > newprogram.f90

e Findent ignores white space outside strings and label fields.
e Fixed and free format Fortran are supported.

e Conversion from fixed to free form is implemented, as well as the other way
around.

e All kinds of DO-loops are recognized, even nested DO-loops using the same
label.

e Findent has been tested on legacy Fortran sources, going back to Fortran IV.
Hollerith's are parsed correctly.

e Unrecognized constructions are allowed and are written on the output as-is.
Incomplete Fortran sources are handled gracefully.

e Findent can relabel the Fortran source. The man page contains a warning:
'use this only on correct programs’. If findent detects a problem (missing label
definition; incomplete program unit; ...), relabelling is abandoned.

e High speed: findent indents about 100.000 lines per second.

2 Building findent
2.1 End users

Building findent is easy and is based on standard tools:

e The distribution tar ball is based on autoconf, a mature program suite to
distribute program sources.

e The distribution tar ball contains the output files of flex and bison, so the
user doesn't need to install these programs. (If they are installed, they will be
used).

e On Linux findent is built by unpacking the tar-ball, and issue the commands:

cd findent-xx.yy.zz

./configure

make

make check # to run the test-suite
sudo make install

e For MacO0S, building findent is the same as for Linux.

e A Windows version can be obtained by the following:

a=i686-w64-mingw32
b="gcc —-dumpmachine”
export CXX="$a-g++ -static"

./configure --build=$b --host=$a

make clean
make

You need to have g++-mingw-w64-1686-win32 or something like that avail-
able. Probably, using WSL or Cygwin on Windows should make it possible to
do the build on the Windows system.

e If building as presented above does not succeed, the script simplemake. sh,

containing usage instructions, can be used.

2.2 Program development and maintenance

The following is for developers and maintainers:

e The script bootstrap runs autoreconf, replaces the copyright statements
in nearly all sources and generates the output of the flex and bison. This
output will be contained in the distribution tar ball, generated with

make distcheck

e An esoteric option is ——with-esope. This causes findent to recognize esope
constructs, see http://www-cast3m.cea.fr/html/esope/esope.html.

e In the files src/debug.h and src/debug.cpp macros and functions are de-
fined to be used when debugging. There is comment in those files how to use
them.

e Findent comes with a comprehensive test suite, located in the directory test.
The tests will exercise every flag, and check if solved bugs are still solved.
Testing is activated by running:

make check

3 Usage

3.1 Flags to influence the working of findent

Options to findent can be given on the command line, like:
findent -ifixed -ofree -i2 < prog.f > prog.£f90

and/or in the environment variable FINDENT_FLAGS, like:

export FINDENT_FLAGS='-i4 -I8'
findent -ifixed -ofree < prog.f > prog.f90

Most flags relate to the format of the input file and output file. However, some
options arrange that findent does not output an indented Fortran source, but other
information. These flags are marked in the man page with the string [NO_ENV] and

http://www-cast3m.cea.fr/html/esope/esope.html

are ignored when present in the environment variable FINDENT_FLAGS. Invalid flags,
both on the command line and in the environment, are silently ignored®. Flags are
read first from FINDENT_FLAGS and secondly from the command line.

The flags are handled in the files src/flags.cpp and src/flags.h. See the man
page for a description of the flags.

3.2 Generating documentation

Findent can generate the following documentation:

A text file ("help-file'), describing all flags.

e A man page, suitable for processing with the program man.

A text file, containing the Changelog.
e Text files, describing the usage in an editor.

e Text file describing how to use findent in editor, for example vim.

3.3 Miscellaneous other functions
e Print version of findent.
e Print 'free’ or 'fixed’, depending on what findent deduces from the input.
e Print dependency information, based on:

— Usage and definitions of modules.

— Usage of include files.
e Print a shell script to be used in combination with the dependencies.
e Print the amount of indentation of the last line read.
e Print the line number of the last usable line as a start for indenting.
e Print a report of defined and used labels.

e Print scripts to incorporate findent in the editors Vim, Emacs or Gedit.

4 Detailed overview of the internals of findent

4.1 Starting the machinery

The main program is in findent.cpp. The flags are read (get_flags()), and

if some kind of documentation has to be produced (docs.print()), the pro-
gram prints the documentation and returns. Otherwise, the class Findent from
findentclass.his instantiated as findent and findent.run() from findentrun. cpp
is called.

1Since findent only writes to standard output, error messages would clutter the indented Fortran
program.

4.2 The main driver: fortran.run()

fortran.run executes the following tasks (trivia are omitted here):

e If standard input is connected to a terminal, take appropriate actions.
e Read all of the input and store the lines in a buffer (input_buffer).

e If the input format is not forced to be fixed or free, call determine_fix_or_free()
to determine the format.

e Instantiate class indent to either Free or Fixed as appropriate. These
are subclasses of class Fortran in fortran.h to define the free or fixed
alternatives of certain functions. See free.cpp, free.h, fixed.cpp and
fixed.h.

e Take actions if the user wants to relabel the input.
e Enter the indenting loop (trivia omitted here):

— Call get_full_statement () to create full Fortran line full_statement
by collating the possible continuation lines to the first (see below).

— Call indent_and_output() to determine the indentation and output
the lines that define the full Fortran line.

4.3 Collecting a full Fortran statement

Collecting a full Fortran statement from the first line and continuation lines is done
in src/fortran.cpp: get_full_statement(). This function looks surprisingly
complex at first sight. This is because continuation lines can contain:

e comment lines,

e blank lines,

® Cpp Or Coco preprocessor statements,
e findentfix lines (see the man page).

Furthermore, attention must be paid if we are relabelling or not. The full Fortran
statement is stored in full_statement.

In src/fortranline.cpp and src/fortranline.h functions are defined to han-
dle lines with Fortran code. Care has been taken that for fixed format, a tab at the
start of a line is handled properly (see do_clean()).

The call to build_statement () has a different implementation for free and fixed
format, see src/free.cpp and src/fixed.cpp, respectively. This function per-
forms the following tasks:

e Add the input Fortranline to c-lines (a list of Fortranline's).
e Add the line, stripped from all non-fortran stuff to full_statement.

e Signal if there are continuation lines to be expected. This is easy in the free-
form case, but in the fixed-form case a look-ahead is necessary. See wizard ()
in fixed.cpp.

4.4 Preprocessing the full Fortran statement

Once a full_statement has been obtained, this line is preprocessed to make it suit-
able for parsing using flex and bison. This is done in Line_prep::set_line(),
in file src/line_prep.cpp. An example may clarify this.

Below is:
e s - The full statement.

e sl - Spaces removed, except in strings and Hollerith's, and after the statement
label.

e sv - Strings, Hollerith's, operators and statement label replaced by a space.

e sc - Strings etc. replaced by space number space, the number is the index
in sv. (sc is used for parsing with bison and flex.)

e wv - A list, length = sv.size(). Each entry consists of a struct whats
(see line_prep.h) which tells (type) what this entry contains: invalid,
none, string, statement label or operator. In case of string there is
stringtype which discriminates between Hollerith (h), single quoted string
(") or double quoted string ("). The value of the entry is contained in value.

s: [123 call sub(Shabcde , 5, 'f oo', 'ab c¢' .concat. "def")]
sl: [123 callsub(5habcde,5,'f oo','ab c'.concat."def")]

sv: [callsub(,5, ,)]
[0123456789012345678] ! these are index numbers in sv
sc: [0 callsub(9 ,5, 13 , 15 16 17)]
wv[0]: statement label [123]
wv[9]: hollerith string [abcde]

wv[13]: single quoted string [f oo]
wv[15]: single quoted string [ab c]
wv[16]: operator [concat]
wv[17]: double quoted string [def]

The other entries have type=none.

4.4.1 Parsing the preprocessed full statement

Parsing the preprocessed full statement is done using bison and flex. Things are ar-

ranged that one line at a time is parsed, see lexer_set(Line_prep p, const int state)
in lexer.l. The string sc (see above) is used for parsing. Parsing is initiated in
indent_and_output () in fortran.cpp by a call to parseline(). This function,
returning a propstruct (see prop.h) containing the results, parses the full state-

ment in two passes:

e The lexer is brought in a state that does not recognize Fortran keywords.
For example:
subroutinesub(x)=10
will return kind=ASSIGNMENT.

e If parsing does is not successful (kind = UNCLASSIFIED), full statement is
parsed again, but now the lexer is in a state to recognize relevant Fortran
keywords.

For example:
subroutinesub(x)
will succeed and returning kind=SUBROUTINE.

4.5 Keeping track of indents

In indent_and_output () (fortran.cpp), a stack is maintained containing the in-
dents, along with the current index. The actions are in principle quite simple: if after
parsing a relevant keyword is found (SUBROUTINE, DO, ...) the indent is changed as
appropriate and put on the stack. If a kind of END (ENDIF, END SUBROUTINE, ...)
is found, the indent is pulled from the stack.

Some constructs deserve extra attention:

e Labelled DO-loops: if a labelled DO-loop is encountered, the label involved
is stored on a stack. When a corresponding statement label is encountered,
appropriate action is taken, also in the case of nested DO-loops sharing to the
same label.?

e MODULE PROCEDURE statements: at encountering a MODULE PROCEDURE, in-
dentation if the next full statement is classified as an executable statement.

e An ambiguity:
MODULEPROCEDUREmyproc
Should this be interpreted as:
MODULE PROCEDUREmyproc
or:
MODULE PROCEDURE myproc
Findent assumes the last is correct.3

4.6 Handling cpp and coco preprocessor statements

It was a design goal that findent should handle macro’s more or less intelligent.

For example:

Input Desired Not desired
#ifdef DIM2 #ifdef DIM2 #ifdef DIM2
do y=1,ny do y=1,ny do y=1,ny
#else #else #else
do y=1,1 do y=1,1 do y=1,1
#endif #endif #endif
do x=1,nx do x=1,nx do x=1,nx
call s(x,y) call s(x,y) call s(x,y)
enddo enddo enddo
enddo enddo enddo

2Shared DO-termination is flagged as a 'deleted feature’ by gfortran.
3This ambiguity arises from the fact that all spaces are removed in the preprocessing phase. In
fixed format (where spaces do not count), this ambiguity is also present for the compiler.

The following preprocessor statements (defined in lexer.1) are recognized:

cpp coco
if 77 if
endif ?? endif
else 7?7 else
elif 77?7 elseif
include "..." | ?7 include "..."
include <...> | ?7 include <...>

Notel: the rest of the preprocessing line is ignored, so, for example, #if has the
same effect as #ifdef.
Note2: the include's are only used when generating dependencies, and are ig-
nored when indenting.

Most of the preprocessor-handling code is reached via handle_pre () in Fortran.cpp
and Pre_analyzer() in pre_analyzer.cpp.
The strategy is as follows:

e A stack is maintained to store the relevant items (e.g. the indentation level
and the stack of indentations) (see push_all(), top_all() and pop_all()
in fortran.h.

e The relevant items are pushed on this stack after #if.

e The relevant items are popped off the stack if appropriate after #endif, #else
and #elif.

e Handling the preprocessor statements is done recursively.

e After a construct like

#if ...
<fortran statements>
#endif

the indentation continues from the state before the #if, but after a construct
like

#if ...

<fortran statements>
#else

<fortran statements>
#endif

the indentation continues from the state after the #else.

In this way, most of the times findent will generate sensible indentation. If findent
makes an error, this can easily be fixed by inclusion of a findentfix statement,
for example (admittedly somewhat constructed):

Original Corrected
program p program p
#ifdef A #ifdef A
do i=1,10 do i=1,10
#else #else
i=1 i=1
#endif #endif
x = x+i x = x+i
#ifdef A #ifdef A
enddo Ifindentfix: do
#endif enddo
end #endif
end

4.7 Relabelling

Relabelling (renumbering of labels) is done in the following stages:

1. Scan the input until a complete program unit (PROGRAM, SUBROUTINE, FUNCTION)
is obtained, collecting the defined and used labels.

2. Regenerate the program unit, now with the renumbered labels.
3. Indent and output the renumbered program unit.

4. Go to step 1.

If some error is detected, (not defined label, label spanning continuation lines,
...) relabelling is abandoned for the current and following program units, however,
indentation proceeds as normal. If relabelling fails, one can run findent with the flag
--query-relabel, to see the reason of failure.

4.8 Generate miscellaneous text files

Help files, man page, scripts for usage in editors etc. are generated in the file
src/docs. cpp. For generating the man page and the help-file, the function manout ()
is used so that generating these files is based on the same input.

The other files are include files, generated from the original text files. For ex-
ample: vim_fortran.inc is generated from vim/fortran.vim, using the script
src/tocpp. Details are available in the file src/Makefile.am.

5 Self replication

Findent has the capability to output a tar ball containing the complete source.*
The method used is to create an include file for src/selfrep.cpp based on the
output of make dist. See src/Makefile.am for details. An issue is to maintain

4This can be disabled by giving the flag —disable-selfrep to configure.

10

a reproducible build (see https://reproducible-builds.org/), because the tar
ball contains time stamps for the containing files. This problem is solved by modify-
ing the standard code to produce a tar ball. Normally, the file bootdate, created by
bootstrap is used as time stamp. Most of the code is contained in configure.ac

6 Copyright

Findent comes with the BSD-3 license:

Copyright: 2015-2025 Willem Vermin

License: BSD-3-Clause

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. 1IN NO EVENT SHALL THE HOLDERS OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

11

https://reproducible-builds.org/

	Findent: Design objectives
	Reliability
	Usability

	Building findent
	End users
	Program development and maintenance

	Usage
	Flags to influence the working of findent
	Generating documentation
	Miscellaneous other functions

	Detailed overview of the internals of findent
	Starting the machinery
	The main driver: fortran.run()
	Collecting a full Fortran statement
	Preprocessing the full Fortran statement
	Parsing the preprocessed full statement

	Keeping track of indents
	Handling cpp and coco preprocessor statements
	Relabelling
	Generate miscellaneous text files

	Self replication
	Copyright

